ОБНЭкология Ecology

  • ISSN (Print) 0367-0597
  • ISSN (Online) 3034-6142

СОДЕРЖАНИЕ ОБЩЕЙ РТУТИ И СТАБИЛЬНЫХ ИЗОТОПОВ АЗОТА И УГЛЕРОДА В ШЕРСТИ БЕЛЫХ МЕДВЕДЕЙ РОССИЙСКОЙ АРКТИКИ

Код статьи
S30346142S0367059725040057-1
DOI
10.7868/S3034614225040057
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 4
Страницы
318-326
Аннотация
Приведены результаты исследований содержания ртути и стабильных изотопов азота и углерода (δN и δC) в шерсти белых медведей (), обитающих в районе островов архипелага Земля Франца-Иосифа, архипелага Новая Земля, а также полуостровов Ямал и Таймыр. Показано, что уровни накопления ртути в шерсти белого медведя с архипелага Земля Франца-Иосифа меньшие (около 2.0 мг/кг), чем у белых медведей из канадского сектора Арктики, и соизмеримы с показателями животных с архипелага Шпицберген. Установлена значимая положительная корреляция между содержанием ртути и стабильных изотопов. Минимальное содержание ртути и изотопов (δN и δC) в шерсти медведей с о-ва Южный (Новая Земля) может быть результатом не изменений климата, а следствием повышенного содержания в их рационе пищи неморского происхождения. Концентрации ртути, зарегистрированные в шерсти белых медведей, свидетельствуют об отсутствии угрозы здоровью животных.
Ключевые слова
белый медведь Ursus maritimus шерсть ртуть стабильные изотопы углерода и азота Земля Франца-Иосифа Новая Земля Ямал Таймыр
Дата публикации
25.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
66

Библиография

  1. 1. Goyer R.A., Clarkson T.W. Toxic effects of metals // Casarett and Doull’s Toxicology: The Basic Science of Poisons / Edit. Klaassen C.D. New York: McGraw–Hill, 2001. P. 811–868.
  2. 2. Clarkson T.W., Magos L. The toxicology of mercury and its chemical compounds // Critical Reviews in Toxicology. 2006. V. 36. P. 609–662. https://doi.org/10.1080/10408440600845619
  3. 3. Scheuhammer A.M., Meyer M.W., Sandheinrich M.B., Murray M.W. Effects of Environmental Methylmercury on the health of wild birds, mammals, and fish // Ambio. 2007. V. 36(1). P. 12–18. https://doi.org/10.1579/0044-7447 (2007)36[12:EOEMOT]2.0.CO;2
  4. 4. Scheuhammer A., Braune B., Chan H.M. et al. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic // Sci. Total Environ. 2015. V. 509. P. 91–103. https://doi.org/10.1016/j.scitotenv.2014.05.142
  5. 5. Basu N., Stamler C.J., Loua K.M., Chan H.M. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum // Toxicology and Applied Pharmacology. 2005. V. 205. P. 71–76.
  6. 6. Basu N., Scheuhammer A.M., Rouvinen-Watt K. et al. Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink // NeuroToxicology. 2007. V. 28. P. 587–593. https://doi.org/10.1016/j.neuro.2006.12.007
  7. 7. Arctic Monitoring and Assessment Programme: AMAP Assessment 2002: Heavy metals in the Arctic. AMAP 2005. Oslo, Norway. http://www.amap.no
  8. 8. Schroeder W.H., Anlauf K.G., Barrie L.A. et al. Arctic springtime depletion of mercury // Nature. 1998. V. 394. P. 331–332. https://doi.org/10.1038/28530
  9. 9. Lindberg S.E., Brooks S., Lin C.J. et al. Formation of reactive gaseous mercury in the Arctic: evidence of oxidation of Hg to gas– phase Hg– II compounds after Arctic sunrise // Water Air Soil Pollut (Focus 1). 2001. P. 295–302. https://doi.org/10.1023/A:1013171509022
  10. 10. Macdonald R.W., Harner T., Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data // Sci. Total Environ. 2005. V. 342. P. 5–86. https://doi.org/10.1016/j.scitotenv.2004.12.059
  11. 11. Красная книга Российской Федерации. Т. «Животные». 2-е изд. М.: ФГБУ «ВНИИ Экология», 2021. 1128 с.
  12. 12. Letcher R.J., Bustnes J.O., Dietz R. et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish // Sci. Total Environ. 2010. V. 408 (15). P. 2995−3043. https://doi.org/10.1016/j.scitotenv.2009.10.038
  13. 13. Lippold A., Bourgeon S., Aars J. et al. Temporal trends of persistent organic pollutants in Barents Sea polar bears (Ursus maritimus) in relation to changes in feeding habits and body condition // Environ. Sci. Technol. 2019. V. 53. P. 984−995. https://doi.org/10.1021/acs.est.8b05416
  14. 14. Patyk K.A., Duncan C., Nol P. et al. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities // Sci. Total Environ. 2015. V. 514. P. 371−378. https://doi.org/10.1016/j.scitotenv.2015.02.007
  15. 15. Schliebe S., Rode K., Gleason J. et al. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea // Polar Biol. 2008. V. 31. P. 999–1010. https://doi.org/10.1007/s00300-008-0439-7
  16. 16. Derocher A.E., Wiig O., Bangjord G. Predation of Svalbard reindeer by polar bears // Polar Biol. 2000. V. 23. P. 675–678. https://doi.org/10.1007/s003000000138
  17. 17. Derocher A.E., Lunn N.J., Stirling I. Polar bears in a warming climate // Integr. Comp Biol. 2004. V. 44. P. 163–176. https://doi.org/10.1093/icb/44.2.163
  18. 18. Gormezano L.J., Rockwell R.F. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay // Ecol. Evol. 2013. V. 3. P. 3509–3523. https://doi.org/10.1002/ece3.740
  19. 19. Born E.W., Renzoni A., Dietz R. Total mercury in hair of polar bears (Ursus maritimus) from Greenland and Svalbard // Polar Research. 1991. V. 9(2). P. 113–120. https://doi.org/10.3402/polar.v9i2.6784
  20. 20. Cardona-Marek T., Knott K.K., Meyer B.E., O’Hara T.M. Mercury concentrations in Southern Beaufort Sea polar bears: variation based on stable isotopes of carbon and nitrogen // Environ. Toxicol. Chem. 2009. V. 28(7). P. 1416–24. https://doi.org/10.1897/08-557.1
  21. 21. Bechshoft T., Dyck M., Pierre K.A.S. et al. The use of hair as a proxy for total and methylmercury burdens in polar bear muscle tissue // Science of the Total Environment. 2019. V. 686. P. 1120-1128. https://doi.org/10.1016/j.scitotenv.2019.06.087
  22. 22. Hobson K.A., Welch H.E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis // Mar. Ecol. Progr. Ser. 1992. V. 84. P. 9–18. https://doi.org/10.3354/meps084009
  23. 23. McKinney M.A., Peacock E., Letcher R.J. Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears // Environ. Sci. Technol. 2009. V. 43. P. 4334–4339. https://doi.org/10.1021/es900471g
  24. 24. Иванов Е.А., Мордвинцев И.Н., Платонов Н.Г. и др. Изотопный состав крови белого медведя Ursus maritimus карско-баренцевоморской популяции // Доклады РАН. 2018. Т. 480. № 2. С. 247–249.
  25. 25. Ivanov E.A., Mordvintsev I.N., Platonov N.G. et al. Isotopic composition of blood of polar bears (Ursus maritimus) of the Kara-Barents Sea Population // Doklady Biological Sciences. 2018. V. 480. P. 93–96. DOI:10.1134/S0012496618030055
  26. 26. O’Connell T.C., Hedges R.E.M. Investigations into the effect of diet on modern human hair isotopic values // American Journal of Physical Anthropology. 1999. V. 108. P. 409–425.
  27. 27. Tartu S., Aars J., Andersen M. et al. Choose your poison – space-use strategy influences pollutant exposure in Barents Sea polar bears // Environ. Sci. Technol. 2018. V. 52 (5). P. 3211–3221. https://doi.org/10.1021/acs.est.7b06137
  28. 28. Routti H., Atwood T.C., Bechshoft T. et al. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic // Sci. Total Environ. 2019. V. 664. P. 1063−1083. https://doi.org/10.1016/j.scitotenv.2019.02.030
  29. 29. Lippold A., Aars J., Andersen M. et al. Two decades of mercury concentrations in Barents Sea polar bears (Ursus maritimus) in relation to dietary carbon, sulfur, and nitrogen // Environ. Sci. Technol. 2020. V. 54 (12). P. 7388–7397. https://dx.doi.org/10.1021/acs.est.0c01848
  30. 30. Lippold A., Boltunov A., Aars J. et al. Spatial variation in mercury concentrations in polar bear (Ursus maritimus) hair from the Norwegian and Russian Arctic // Sci. Total Environ. 2022. V. 822. Art. 153572. https://doi.org/10.1016/j.scitotenv.2022.153572
  31. 31. Dietz R., Riget F., Born E.W. et al. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001 // Environ. Sci. Technol. 2006. V. 40 (4). P. 1120–1125. https://doi.org/10.1021/es051636z
  32. 32. Lentfer J.W., Galster A. Mercury in polar bears from Alaska // Journal of Wildlife Diseases. 1987. V. 23 (2). P. 338– 341.
  33. 33. St Louis V.L., Derocher A.E., Stirling I. et al. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic // Environ. Sci. Technol. 2011. V. 45 (14). P. 5922–5928. https://doi.org/10.1021/es2000672
  34. 34. Blevin P., Aars J., Andersen M. et al. Pelagic vs coastal key drivers of pollutant levels in Barents Sea polar bears with Contrasted Space-Use Strategies // Environ. Sci. Technol. 2020. V. 54. P. 985–995.
  35. 35. Bentzen T.W., Follmann E.H., Amstrup S.C. et al. Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis // Can. J. Zool. 2007. V. 85. P. 596–608. https://doi.org/10.1139/Z07-036
  36. 36. Rogers M.C., Peacock E., Simac K. et al. Diet of female polar bears in the southern Beaufort Sea of Alaska: evidence for an emerging alternative foraging strategy in response to environmental change // Polar Biol. 2015. V. 38. P. 1035–1047. https://doi.org/10.1007/s00300-015-1665-4
  37. 37. Kelly B.C., Ikonomou M.G., Blair J.D. et al. Food Web-Specific Biomagnification of Persistent Organic Pollutants // Science. 2007. V. 317. P. 236−239. https://doi.org/10.1126/science.1138275
  38. 38. Sonne C., Dietz R., Leifsson P.S. et al. Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels? // Environmental Health. 2007. V. 6. Art. 11. https://doi.org/10.1186/1476-069X-6-11
  39. 39. Feng D., Gleason C.J., Lin P. et al. Recent changes to Arctic River discharge // Nature Communications. 2021. V. 12. Art. 6917. https://doi.org/10.1038/s41467-021-27228-1
  40. 40. Dietz R., Sonne C., Basu N. et al. What are the toxicological effects of mercury in Arctic biota? // Sci. Total Environ. 2013. V. 443. P. 775–790. http://dx.doi.org/10.1016/j.scitotenv.2012.11.046
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека