RAS BiologyЭкология Ecology

  • ISSN (Print) 0367-0597
  • ISSN (Online) 3034-6142

WING LENGTH VARIATION IN PIED FLYCATCHERS (PALL.) BREEDING IN THE VICINITY OF THE MIDDLE URAL COPPER SMELTER

PII
S30346142S0367059725040047-1
DOI
10.7868/S3034614225040047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
305-317
Abstract
The spatiotemporal variation in the wing length of pied flycatchers breeding near the Middle Ural copper smelter (MUCS) and in the background area were analyzed in 1996–2023, a period of significant reduction in industrial emissions. Females and males were on average smaller near MUCS than in the background area probably due to the forcing the low-quality individuals into suboptimal (polluted) habitats. Yearlings had shorter wings than older birds. WL of males increased with increasing melanization of the upper body. Mean WL and proportion of old individuals among breeding birds increased over the study period. The body size of partners in breeding pairs did not correlate. The larger breeding birds, the earlier they started egglaying and the more eggs and fledglings produced.
Keywords
размерная структура многолетняя динамика промышленное загрязнение сокращение промышленных выбросов Средний Урал
Date of publication
09.06.2025
Year of publication
2025
Number of purchasers
0
Views
48

References

  1. 1. Telleria J.L., De La Hera I., Perez-Tris J. Morphological variation as a tool for monitoring bird populations: a review // Ardeola. 2013. V. 60. № 2. P. 191–224.
  2. 2. Bickham J.W. The four cornerstones of evolutionary toxicology. // Ecotoxicology. 2011. V. 20. P. 497–502.
  3. 3. Lifshitz N., St Clair C.C. Coloured ornamental traits could be effective and non-invasive indicators of pollution exposure for wildlife // Conservation Physiology. 2016. V. 4. № 1. Art. cow028.
  4. 4. James F.C. Geographic size variation in birds and its relationship to climate // Ecology. 1970. V. 51. № 3. P. 365–390.
  5. 5. Gosler A.G., Greenwood J.J.D., Baker J.K., Davidson N.C. The field determination of body size and condition in passerines: a report to the British Ringing Committee // Bird Study. 1998. V. 45. № 1. P. 92–103.
  6. 6. Hernandez M.A., Campos F., Martin R., Santamaria T. Usefulness of biometrics to analyse some ecological features of birds // Biometrics-unique and diverse applications in nature, science, and technology / Ed. Albert M. InTech, 2011. P. 1–22.
  7. 7. Eeva T., Tanhuanpaa S., Rabergh C. et al. Biomarkers and fluctuating asymmetry as indicators of pollutioninduced stress in two hole‐nesting passerines // Funct. Ecol. 2000. V. 14. № 2. P. 235–243.
  8. 8. Высоцкий В.Г. Окраска самцов мухоловки-пеструшки и ее связь с другими признаками // Орнитология. 1994. T. 26. C. 28–32.
  9. 9. Barton M.G., Henderson I., Border J.A. et al. A review of the impacts of air pollution on terrestrial birds // Sci. Total Environ. 2023. V. 873. Art. 162136.
  10. 10. Alaya-Ltifi L., Hayder-Benyahya N., Selmi S. Condition and health of Rufous Bush Robin (Cercotrichas galactotes) nestlings in a polluted oasis habitat in Southern Tunisia // Bull. Environ. Contam. Toxicol. 2015. V. 94. P. 732–737.
  11. 11. Ding J., Yang W., Wang S. et al. Effects of environmental metal pollution on reproduction of a free-living resident songbird, the tree sparrow (Passer montanus) // Sci. Total Environ. 2020. V. 721. Art. 137674.
  12. 12. Ding J., Yang W., Wang S. et al. Does environmental metal pollution affect bird morphometry? A case study on the tree sparrow Passer montanus // Chemosphere. 2022. V. 295. Art. 133947.
  13. 13. Albayrak T., Pekgoz A.K. Heavy metal effects on bird morphometry: A case study on the house sparrow Passer domesticus // Chemosphere. 2021. V. 276. Art. 130056.
  14. 14. Geens A., Dauwe T., Eens M. Does anthropogenic metal pollution affect carotenoid colouration, antioxidative capacity and physiological condition of great tits (Parus major)? // Comp. Biochem. Physiol. Pt. C: Toxicol. Pharmacol. 2009. V. 150. № 2. P. 155–163.
  15. 15. Dauwe T., Janssens E., Eens M. Effects of heavy metal exposure on the condition and health of adult great tits (Parus major) // Environ. Pollut. 2006. V. 140. № 1. P. 71–78.
  16. 16. Dauwe T., Janssens E., Pinxten R., Eens M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient // Environ. Pollut. 2005. V. 136. № 2. P. 243–251.
  17. 17. Eeva T., Lehikoinen E., Sunell C. The quality of pied flycatcher (Ficedula hypoleuca) and great tit (Parus major) females in an air pollution gradient // Ann. Zool. Fennici. 1997. V. 34. № 1. P. 61–71.
  18. 18. Roux K.E., Marra P.P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient // Arch. Environ. Contam. Toxic. 2007. V. 53. P. 261–268.
  19. 19. Rainio M.J., Ruuskanen S., Eeva T. Spatio-temporal variation in the body condition of female pied flycatcher (Ficedula hypoleuca) in a polluted environment // Urban Ecosyst. 2017. V. 20. P. 1035–1043.
  20. 20. Воробейчик Е.Л. Естественное восстановление наземных экосистем после прекращения промышленного загрязнения. 1. Обзор современного состояния исследований // Экология. 2022. № 1. С. 3–41.
  21. 21. Vorobeichik E.L. Natural recovery of terrestrial ecosystems after the cessation of industrial pollution: 1. A state-of-the-art review // Russ. J. Ecol. 2022. V. 53. №. 1. P.1–39. https://doi.org/10.1134/S1067413622010118
  22. 22. Воробейчик Е.Л., Трубина М.Р., Хантемирова Е.В., Бергман И.Е. Многолетняя динамика лесной растительности в период сокращения выбросов медеплавильного завода // Экология. 2014. № 6. C. 448–458.
  23. 23. Vorobeichik E.L., Trubina M.R., Khantemirova E.V., Bergman I.E. Long-term dynamic of forest vegetation after reduction of copper smelter emissions // Russ. J. Ecol. 2014. V. 45. № 6. P. 498–507. https://doi.org/10.1134/S1067413614060150
  24. 24. Бельский Е.А., Ляхов А.Г. Изменчивость состояния особей мухоловки-пеструшки Ficedula hypoleuca, гнездящихся в окрестностях Среднеуральского медеплавильного завода // Экология. 2024. № 6. С. 434–445.
  25. 25. Bel’skii E.A., Lyakhov A.G. Variation in the body condition of pied flycatchers Ficedula hypoleuca breeding in vicinities of the Middle Ural copper smelter // Russ. J. Ecol. 2024. V. 55. № 6. P. 450–460. https://doi.org/10.1134/S106741362460232X
  26. 26. Бельский Е.А., Ляхов А.Г. Динамика населения птиц-дуплогнездников в условиях сокращения промышленных выбросов (на примере Среднеуральского медеплавильного завода) // Экология. 2021. № 4. С. 278–288.
  27. 27. Bel’skii E.A., Lyakhov A.G. Dynamics of the community of hole-nesting birds under conditions of reduced industrial emissions (based on the example of the Middle Ural copper smelter) // Russ. J. Ecol. 2021. V. 52. № 4. P. 296–306. https://DOI:10.1134/S1067413621040044
  28. 28. Lundberg A., Alatalo, R.V. The pied flycatcher. London: T. and A.D. Poyser, 1992.
  29. 29. Jenni L., Winkler R. Moult and ageing of European passerines. London: Acad. Press, 1994. 225 p.
  30. 30. Зимин В.Б. Возрастные и сезонные изменения размеров у некоторых воробьиных птиц // Тр. Биолог. НИИ ЛГУ. 1981. № 32. С. 151–161.
  31. 31. Flinks H., Salewski V. Quantifying the effect of feather abrasion on wing and tail lengths measurements // J. Ornithol. 2012. V. 153. P. 1053–1065.
  32. 32. Drost R. Uber das Brutkleid mannlicher Trauerfliegenfanger, Muscicapa hypoleuca // Vogelzug. 1936. V. 6. P. 179–186.
  33. 33. Артемьев А.В. Популяционная экология мухоловки-пеструшки в северной зоне ареала. М.: Наука, 2008. 267 с.
  34. 34. Eeva T., Lehikoinen E. Growth and mortality of nestling great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in a heavy metal pollution gradient // Oecologia. 1996. V. 108. P. 631–639.
  35. 35. Janssens E., Dauwe T., Pinxten R. et al. Effects of heavy metal exposure on the condition and health of nestlings of the great tit (Parus major), a small songbird species // Environ. Pollut. 2003. V. 126. № 2. P. 267–274.
  36. 36. Eeva T., Lehikoinen E., Pohjalainen T. Pollution-related variation in food supply and breeding success in two holenesting passerines // Ecology. 1997. V. 78. P. 1120–1131.
  37. 37. Eeva T., Sillanpaa S., Salminen J.P. The effects of diet quality and quantity on plumage colour and growth of great tit Parus major nestlings: a food manipulation experiment along a pollution gradient // J. Avian Biol. 2009. V. 40. № 5. P. 491–499.
  38. 38. Паевский В.А. Демография птиц. Л.: Наука, 1985. 285 с.
  39. 39. Соколов Л.В. Филопатрия и дисперсия птиц // Тр. Зоол. ин-та АН СССР. 1991. Т. 230. С. 1–232.
  40. 40. Edelaar P., Siepielski A.M., Clobert J. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology // Evolution. 2008. V. 62. № 10. P. 2462–2472.
  41. 41. Camacho C., Sanabria-Fernandez A., Banos-Villalba A. et al. Experimental evidence that matching habitat choice drives local adaptation in a wild population // Proc. R. Soc. Lond. Ser. B: Biol. Sci. 2020. V. 287. Art. 20200721.
  42. 42. Lundberg A., Alatalo R.V., Carlson A. et al. Biometry, habitat distribution and breeding success in the pied flycatcher Ficedula hypoleuca // Ornis Scand. 1981. V. 12. P. 68–79.
  43. 43. Camacho C., Canal D., Potti J. Nonrandom dispersal drives phenotypic divergence within a bird population // Ecol. Evol. 2013. V. 3. № 14. P. 4841–4848.
  44. 44. Camacho C., Canal D., Potti J. Testing the matching habitat choice hypothesis in nature: phenotypeenvironment correlation and fitness in a songbird population // Evol. Ecol. 2015. V. 29. P. 873–886.
  45. 45. Brown J.L. Territorial behavior and population regulation in birds: a review and re-evaluation // Wilson Bull. 1969. V. 81. № 3. P. 293–329.
  46. 46. Fretwell S.D., Lucas J.H. Jr. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development // Acta Biotheor. 1970. V. 19. P. 16–36.
  47. 47. Gezelius L., Grahn M., Kallander H. et al. Habitatrelated differences in clutch size of the Pied Flycatcher Ficedula hypoleuca // Ann. Zool. Fennici. 1984. V. 21. P. 209–212.
  48. 48. Belskii E., Belskaya E. Trophic match/mismatch and reproduction of the pied flycatcher Ficedula hypoleuca in a metal-polluted area // Environ. Pollut. 2021. V. 276. Art. 116754.
  49. 49. Belskii E., Lyakhov A. Improved breeding parameters in the pied flycatcher with reduced pollutant emissions from a copper smelter // Environ. Pollut. 2022. V. 302. Art. 119089.
  50. 50. Воробейчик Е.Л., Кайгородова С.Ю. Многолетняя динамика содержания тяжелых металлов в верхних горизонтах почвы в районе воздействия медеплавильного завода в период снижения его выбросов // Почвоведение. 2017. № 8. С. 1009–1024.
  51. 51. Трубина М.Р. Уязвимость видов травяно-кустарничкового яруса к загрязнению выбросами медеплавильного завода: роль различий в способе распространения диаспор // Экология. 2020. № 2. С. 90–100.
  52. 52. Trubina M.R. Vulnerability to copper smelter emissions in species of the herb-dwarf shrub layer: role of differences in the type of diaspore dispersal // Russ. J. Ecol. 2020. V. 51. № 2. P. 107–117. https://doi.org/10.1134/S1067413620020125
  53. 53. Воробейчик Е.Л., Ермаков А.И., Гребенников М.Е. Начальные этапы восстановления сообществ почвенной мезофауны после сокращения выбросов медеплавильного завода // Экология. 2019. № 2. С. 133–148.
  54. 54. Vorobeichik E.L., Ermakov A.I., Grebennikov M.E. Initial stages of recovery of soil macrofauna communities after reduction of emissions from a copper smelter // Russ. J. Ecol. 2019. V. 50. № 2. P. 146–160. https://doi.org/10.1134/S1067413619020115
  55. 55. Jarvi T., Roskaft E., Bakken M. et al. Evolution of variation in male secondary sexual characteristics: a test of eight hypotheses applied to pied flycatchers // Behav. Ecol. Sociobiol. 1987. V. 20. P. 161–169.
  56. 56. Керимов А.Б., Иванкина Е.В., Шишкин В.С. Неустойчивый половой диморфизм и параметры размножения мухоловки-пеструшки // Орнитология. 1994. Т. 26. С. 13–27.
  57. 57. Керимов А.Б., Гриньков В.Г., Иванкина Е.В. и др. Влияние весенних температур на интенсивность рекламного поведения и уровень базального метаболизма ярких и криптически окрашенных самцов мухоловки-пеструшки (Ficedula hypoleuca) // Зоол. журн. 2014. Т. 93. № 10. С. 1288–1288.
  58. 58. Ivankina E.V., Grinkov V.G., Kerimov A.B. Male colour type and lifetime breeding success in the Pied Flycatcher Ficedula hypoleuca // Acta Ornithol. 2001. V. 36. № 1. P. 91–96.
  59. 59. Kerimov A.B., Ilyina T.A., Ivankina E.V. et al. Melaninbased coloration and immunity in polymorphic population of pied flycatcher, Ficedula hypoleuca // Evol. Ecol. 2018. V. 32. P. 89–111.
  60. 60. Alatalo R.V., Lundberg A., Glynn C. Female pied flycatchers choose territory quality and not male characteristics // Nature. 1986. V. 323. № 6084. P. 152–153.
  61. 61. Slagsvold T. Nest site settlement by the pied flycatcher: does the female choose her mate for the quality of his house or himself? // Ornis Scand. 1986. P. 210–220.
  62. 62. Sirkia P.M., Laaksonen T. Distinguishing between male and territory quality: females choose multiple traits in the pied flycatcher // Anim. Behav. 2009. V. 78. № 5. P. 1051–1060.
  63. 63. Potti J. Causes and consequences of age-assortative pairing in pied flycatchers (Ficedula hypoleuca) // Etologia. 2000. V. 8. P. 29–36.
  64. 64. Lifjeld J.T., Slagsvold T. Female pied flycatchers Ficedula hypoleuca choose male characteristics in homogeneous habitats // Behav. Ecol. Sociobiol. 1988. V. 22. P. 27–36.
  65. 65. Куранов Б.Д. Гнездовая биология мухоловки-пеструшки (Ficedula hypoleuca, Passeriformes, Muscicapidae) в юго-восточной части ареала // Зоол. журн. 2018. Т. 97. № 3. С. 321–336.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library